Question		on	Expected Answers	Marks	Additional Guidance
1	(a)	(i)	I = V/R = 8.0/200	C1	
			I = 0.040 (A)	A1	
		(ii)	V = 24 - 8 = 16 (V)	B1	
		(iii)	R = 16/0.04 giving	C1	accept ratio of p.d.s to ratio of Rs
			$R = 400 \; (\Omega)$	A1	ecf from (i) & (ii) ie (a)(ii)/(a)(i)
		(iv)	$P = VI = I^2 R = V^2 / R$	C1	ecf from (i) & (ii)
			P = 0.640 (W)	A1	accept 640 mW
	(b)	(i)	the thermistor has heated up/ its temperature has increased	B1	
			so its resistance has dropped	M1	accept so the current increases
			so the ratio of the voltages across the potential divider changes/AW	A1	accept so IR of fixed resistor increases
		(ii)	voltages are equal so resistances are equal	B1	
	(c)	(ii)	straight line through origin labelled R	B1	allow correct lines with no labels
			passing through 0.06,12	B1	
		(ii)	upward curve below straight line through origin labelled T	B1	
			passing through 0.06,12	B1	
			Total question 3	15	
				13	

Question		on	Answer	Marks	Guidance	
2	(a)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	M1 A1	allow chemical	
		(ii)	(some) energy is transferred into thermal energy /lost as heat in (driving charge through) the battery. It behaves as if it has an (internal) resistance/AW or there is a voltage drop across/decrease in voltage from the battery when a current is drawn from it/AW	B1	allow any description which uses E = V + Ir with symbols defined but not just the formula alone or e.g. statement about 'lost volts'/current	
	(b)	(correct substitution into resistors in parallel formula R = 90 Ω	C1 A1	1/R = 1/90 or 0.011 correct answer	
		(ii)	using $V_{out} = R_2/(R_1 + R_2)$ V_{in} : alt: 16 = I x 120 $V_{out} = 90/(30 + 90)$ 16so I = 0.133 A $V_{out} = 12$ V $V_{out} = 0.13 \times 90 = 12$ V	C1 C1 A1	ecf (b)(i) accept $V_{out} = (90/120) \times 16 = 12 \text{ V}$ for full marks N.B. beware of false ratios, e.g. $360/(120 + 360)$ giving correct answer; give first marking point only	
A A A		(iii)	resistance (of thermistor) decreases (with temperature increase) current in circuit increases or as total resistance is less so current in thermistor increases voltage ratio between 30Ω and combination changes so voltage across thermistor falls	B1 M1 A1 M1 A1	max 4 marks QWC mark is either of the M marks	
	(c)	(Q = It = 1.2 x 8 x 60 x 60 Q = 34560 (C) correct unit,	C1 A1 B1	accept 3.5 or 3.46 x 10 ⁴ allow 1 mark for answer of 9.6 or 576 allow C, kC, A s; N.B. 9.6 A h or 576 A min score 3/3	
		(ii)	energy = 34560 x 16 = 552960 J or I = 1.4/16 = 00875 A time = 552960/1.4 = 394970 s then t = 34560/I time = 394970/3600 = (109.7 h) = 110 h	C1 C1 A1	ecf (c)(i) allow full marks for $1.2 \times 8 \times 16/1.4 = 110 \text{ h}$ allow 111 h when using $3.5 \times 10^4 \text{ C}$	
			Total	18		

			Answer	Marks	Guidance
3	(a)		360 (Ω)	B1	
		(i)2	Curr	B1	not symbol only; not unit only
		(ii)1	1/10 + 1/20 + 1/40 = 1/R	C1	1/R = 0.175
			R = 5.7 (Ω)	A1	accept 40/7
		(ii)2	potential difference	B1	accept p.d. or voltage not e.m.f.; not symbol only; not unit only
	(b)	(p.d./voltage must be proportional to curre as long as temperature and/or (other) physical conditions	M1	symbols may be used but must be defined
			remain constant	A1	
			R line is straight and through the origin	B1	
		(ii)1	(same current so) at 0.6 A have	B1	accept resistors in series (so V's add); i.e recognise that at 0.6 A each component has 4.5 V across it.
			4.5 V + 4.5 V (=9.0 V)	B1	
		(ii)2	add currents so at 3.0 V have	B1	accept attempt to add currents for 1 mark (i.e. method mark)
			0.2 A + 0.4 A = 0.6 A	B1	
		(iii)	thermistor heats up/temperature increases resistance (of thermistor/circuit) decreases (so current	B1	max 3 marks
			rises)	B1	accept thermal energy frees more charge carriers/AW
			temperature/resistance becomes constant (after 2 s)	B1	
			because thermal equilibrium reached	B1	accept energy/power/heat in/generated = energy/power/heat out/lost
			Total	15	